ENCYCLOPEDIA 4U .com

 Web Encyclopedia4u.com

# Conservation of energy

Conservation of energy is the first law of thermodynamics, and one of several conservation laws.

It is stated as follows:

The total inflow of energy into a system must equal the total outflow of energy from the system, plus the change in the energy contained within the system.

Although ancient philosophers as far back as Thales of Miletus may have had inklings of the First Law, it was first stated in its modern form by the German surgeon Julius Robert von Mayer (1814-1878) in his "Remarks On the Forces of Inorganic Nature" in Annalen der Chemie und Pharmacie, 43, 233 (1842). Mayer reached his conclusion on a voyage to the Dutch East Indies (now Indonesia), where he found that his patients' blood was a deeper red, because they were using consuming less oxygen, and therefore less energy, to maintain their body temperature in the hotter climate. He had discovered that heat and work were both forms of energy, and later, after improving his knowledge of physics, he calculated a quantitative relationship between them.

Meanwhile, in 1843 Joule independently discovered the law by an experiment, now called the "Joule apparatus", in which a descending weight attached to a string caused a paddle immersed in water to rotate. He showed that the gravitational potential energy lost by the weight in descending was equal to the thermal energy (heat) gained by the water by friction with the paddle.

Unfortunately for Mayer, his work was overlooked in favour of Joule's, and Mayer attempted to commit suicide. Later, Mayer's reputation was restored by a sympathetic account in John Tyndall's Heat: A Mode of Motion (1863).

A similar law was written in the privately published Die Erhaltung der Kraft (1847) by Hermann von Helmholtz.

The classical form of the energy conservation law (and in fact the notion of energy in the first place) is directly related (through the corresponding equation of motion) to the force- concept describing the interaction of particles. The latter can be shown to be necessarily instantaneous (i.e. Newtonian) as otherwise one would not be able to define a force objectively, i.e. independent of the state of motion of the observer. One can therefore say that the law of energy conservation does, by definition, only strictly hold for this case of a static interaction of particles, but is not more than an arbitrary ad hoc concept if applied to other situations, in particular those involving light: two light waves can be made to extinguish each other completely if superposed with the correct phase, which proves that a form of energy conservation does not apply here.

## References

Engines of Our Ingenuity, episode 722 - radio broadcast by John Lienhard, produced by KUHF-FM Houston)

Content on this web site is provided for informational purposes only. We accept no responsibility for any loss, injury or inconvenience sustained by any person resulting from information published on this site. We encourage you to verify any critical information with the relevant authorities.